
Senior Design Server/Client Development for
Project Matching [Phase 3]

Team 02

Client-Advisors Dr. Akhilesh Tyagi and Jacob Grundmeier

Backend Design Noah Nelson, Max Kueller

Frontend Design Evan Brummer

Algorithm Design Devin Tigges, Robert Holeman

Our project is the third phase of an ECpE web application that will replace the 3rd
party tools and processes currently used to manage senior design projects.

● Students will be able to configure preferences for projects and teammates.
● Clients will be able to submit projects via web forms.
● Faculty will be able to manage and assign projects using a specialized

algorithm to match students to their preferences.

● It’s not quite done yet, one more phase!

Project Matching - Introduction

Project Matching - Progress

● Component Diagram: Phase 1

AngularJS prototype

?

Project Matching - Progress

● Component Diagram: Phase 2

ReactJS application

Constants and Placeholders

Routing

Login Dashboard Preferences

Proposals Matching . . .

Algorithm
prototype

Project Matching - Progress

Spring Boot applicationReactJS application

User Context

Routing

Login
Dashboard

Preferences

Proposals
Matching . . .

● Component Diagram: Phase 3

New Matching
Algorithm

Users

Projects

Controller
Endpoints

Project Matching - Progress

Functional requirements: First Semester

Project Matching - Progress

1) The matching algorithm should accurately match students to a project based on their interests and preferences.

2) The web application should have separate functions based on the user type: proposal submission for clients, proposal
selection for students, and proposal approval and assignment for administrators.

3) The system should handle a minimum of 100 concurrent users without a significant increase in response time.

4) UI should be expanded to allow Clients and Professors to enter projects.

5) After project matching occurs, the mass emailing process should be automated.

6) The database’s design/structure should be improved significantly.

7) The algorithm should be proven to work as expected in testing environments with large data.

Functional requirements: Application

Project Matching - Progress

● The application must support 5 types of users that will use the app throughout a SD semester: Instructor, Advisor,
Student, Client, and Board (members).

● The application must be able to intelligently parse CSV lists of user info (email, name, type), uploaded by Instructors to
register users.

● Instructors must be able to manage rosters and user info at any scale, both large CSV imports and individual users.
● All users are required to login with an email that has been added/whitelisted by an Instructor and assigned at least one

role (user type).
● The login page must accommodate both logging in via the Iowa State Single-Sign-On (SSO) and with a standard email

and password, because some Clients may not have a registered NetID.
● Users must be able to have multiple roles (user types) assigned, with the option to switch between them and view the

corresponding dashboard.
● Users (typically instructors) must be able to open multiple sessions on multiple user types for convenience when

setting up for the semester.
● The matching algorithm should find an outcome that assigns students to their most preferred project(s) as much as

possible. “Maximize the number of student bids satisfied.”

Functional Requirements: User Stories

Project Matching - Progress

● Clients must be able login, create proposal forms and submit them for review by an Instructor. (After being registered)
○ Proposals should contain the client name and email, project title, etc.

● Instructors must be able to approve and reject project proposals.
● Students must be able to declare their top [5] project preferences from the list of approved projects, and update their

preferences at any point before the matching deadline.
● Instructors must be able to configure and send automated emails from inside the application. This is ideal for

prompting clients to submit proposals, prompting students to enter project preferences, and other general notifications.
● Instructors must be able to execute a project matching algorithm to automatically assign teams of students to

approved projects based on their preferences.
● Instructors must be able to modify the results of the matching algorithm to account for special or unexpected cases.
● Instructors must be able to assign Advisors to one or more generated project groups.
● Board/Faculty members must be able to sign up for one or more “industry review panel” timeslots near the end of the

492 semester.

Project Matching: Web Application

Student Dashboard

Instructor Dashboard

Project Matching: Backend Server
Team 02

Clients Jacob Grundmeier and Akhilesh Tyagi
Advisor Akhilesh Tyagi

Database Design Noah Nelson

Frontend Design Joshua Izumba, Noah Nelson, Evan Brummer

Algorithm Design Robert Holeman, Devin Tigges, Max Kueller

● Java 17 and Spring Boot 3.1
● Maven
● Lombok annotation
● Hibernate (JPA) for database handling
● H2 for DB testing
● Faker for data generation
● Uses Service, Controller, Repository flow

Backend

Project Matching: Algorithm
Team 02

Clients Jacob Grundmeier and Akhilesh Tyagi
Advisor Akhilesh Tyagi

Database Design Noah Nelson

Frontend Design Joshua Izumba, Noah Nelson, Evan Brummer

Algorithm Design Robert Holeman, Devin Tigges, Max Kueller

We implemented a bidding algorithm optimized by student project and group mate
preferences that gives students control over how they want project to be selected.

Algorithm

Initialization: Set up the initial conditions by assigning each student to be free and
marking each project and groupmate as totally unsubscribed.

Main Loop - Student Assignment: For each student in the list:

● Determine the highest-bid project and the highest-bid groupmate
● If the student has no project preference, set them in the first valid project that

will take them or consider the groupmate bid if available.
● If the student already has a project, compare bids to decide whether to keep

the current project or switch to a higher-bid project.
● Set the student's project to the determined highestProjectBid.

Algorithm - Design

Groupmate Handling: For the current student:

● Add groupmates unless major requirements are not met.
● If a groupmate already has a project: Check bids to decide whether to keep the current assignment or switch to

another groupmate's project.
● Set the groupmate's project accordingly.

Second Pass - Assign to Open Projects:

● Go through the list of students again.
● For each student, find a project based on preferences and major.
● If the student is not initially assigned, match them to the first open project that will take them.

Result:

The algorithm returns a list of students with their assigned projects to be sent to the frontend.

Algorithm - Design

Algorithm - Test Results

Demo
Team 02

Clients Jacob Grundmeier and Akhilesh Tyagi
Advisor Akhilesh Tyagi

Database Design Noah Nelson

Frontend Design Joshua Izumba, Noah Nelson, Evan Brummer

Algorithm Design Robert Holeman, Devin Tigges, Max Kueller

